Unlocking PM1-Bound Cytotoxicity: Where Do We Stand and What's Next?
DOI:
https://doi.org/10.70130/CAST.2024.7103Keywords:
PM1 , Cytotoxicity, Respiratory diseasesAbstract
Particulate matter (PM) in air stands as a crucial environmental health concern, implicated in various diseases based on extensive epidemiological investigations. Associations between PM exposure and conditions such as acute respiratory infections, lung cancer, and chronic respiratory and cardiovascular diseases have been well-established. Despite incomplete
To better understand how these biological processes work, in vitro studies have shown that PM1 causes harmful effects on cells, damage to DNA, and increased production of proinflammatory cytokines. Biomass burning and vehicular emissions contribute to PM emissions, which play pivotal roles in altering ambient environment. This encompasses its chemical,
physical, and toxicological characteristics. This comprehensive chapter consolidates findings on the physiochemical features of PM1 particulates, with an aerodynamic diameter of ≤ 1 µm (PM1), that focus on impact on health and the environment. PM1 particulates have a cytotoxic activity that poses a threat to health. Furthermore, the review extensively explores the dynamics of cytotoxicity associated with PM1 in various environmental contexts at national and international levels. The amalgamation of insights provides a nuanced perspective on the intricacies of PM1-bound cytotoxicity, thereby enhancing our understanding of air quality
challenges in both Indian and global contexts. To the best of our knowledge, this is the first review article on the cytotoxicity of PM1 particles.
References
Ahrens, C. D., & Henso, R. (2021). Meteorology today: An introduction to weather, climate, and the environment. Cengage Learning.
Akhtar, U. S., Rastogi, N., McWhinney, R. D., Urch, B., Chow, C.-W., Evans, G. J., & Scott, J. A. (2014). The combined effects of physicochemical properties of size-fractionated ambient particulate matter on in vitro toxicity in human A549 lung epithelial cells. Toxicology Reports, 1, 145–156. 18. https://doi.org/10.1016/j.toxrep.2014.05.002
Bai, R., Guan, L., Zhang, W., Xu, J., Rui, W., Zhang, F., & Ding, W. (2016). Comparative study of the effects of PM1-induced oxidative stress on autophagy and surfactant protein B and C expressions in lung alveolar type II epithelial MLE-12 cells. Biochimica et Biophysica Acta, 1860(12), 2782–2792. https://doi.org/10.1016/j.bbagen.2016.05.020
Bamola, S., Goswami, G., Dewan, S., Goyal, I., Agarwal, M., Dhir, A., & Lakhani, A. (2024). Characterising temporal variability of PM2.5/PM10 ratio and its correlation with meteorological variables at a sub-urban site in the Taj City. Urban Climate, 53, 101763. https://doi.org/10.1016/j.uclim.2023.101763
Bonetta, S., Bonetta, S., Schilirò, T., Ceretti, E., Feretti, D., Covolo, L., Vannini, S., Villarini, M., Moretti, M., Verani, M., Carducci, A., Bagordo, F., De Donno, A., Bonizzoni, S., Bonetti, A., Pignata, C., Carraro, E., Gelatti, U., & MAPEC. (2019). Mutagenic and genotoxic effects induced by PM0.5 of different Italian towns in human cells and bacteria: The MAPEC_LIFE study. Environmental Pollution, 245, 1124–1135. https://doi.org/10.1016/j.envpol.2018.11.017
Brown, R. K., Wyatt, H., Price, J. F., & Kelly, F. J. (1996). Pulmonary dysfunction in cystic fibrosis is associated with oxidative stress. The European Respiratory Journal, 9(2), 334–339. [52]. https://doi.org/10.1183/09031936.96.09020334
Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley, J. A., Hansen, J. E., & Hofmann, D. J. (1992). Climate forcing by anthropogenic aerosols. Science, 255(5043), 423–430. https://doi.org/10.1126/science.255.5043.423
Chen, T., Chen, F., Wang, K., Ma, X., Wei, X., Wang, W., Huang, P., Yang, D., Xia, Z., & Zhao, Z. (2021). Acute respiratory response to individual particle exposure (PM1, PM2.5 and PM10) in the elderly with and without chronic respiratory diseases. Environmental Pollution, 271, 116329. https://doi.org/10.1016/j.envpol.2020.116329
da Silva Junior, F. C., Felipe, M. B. M. C., Castro, D. E. F., Araújo, S. C. D. S., Sisenando, H. C. N., & Batistuzzo de Medeiros, S. R. (2021). A look beyond the priority: A systematic review of the genotoxic, mutagenic, and carcinogenic endpoints of non-priority PAHs. Environmental Pollution, 278, 116838. https://doi.org/10.1016/j.envpol.2021.116838
Das, A., Kumar, A., Habib, G., & Vivekanandan, P. (2021). Insights on the biological role of ultrafine particles of size PM<0.25: A prospective study from New Delhi. Environmental Pollution, 268(B), 115638. https://doi.org/10.1016/j.envpol.2020.115638
Davidson, C. I., Phalen, R. F., & Solomon, P. A. (2005). Airborne Particulate matter and human health: A review. Aerosol Science and Technology, 39(8), 737–749. https://doi.org/10.1080/02786820500191348
Dubey, K., Maurya, R., Mourya, D., & Pandey, A. K. (2022). Physicochemical characterization and oxidative potential of size fractionated Particulate Matter: Uptake, genotoxicity and mutagenicity in V-79 cells. Ecotoxicology and Environmental Safety, 247, 114205. https://doi.org/10.1016/j.ecoenv.2022.114205
Farina, F., Sancini, G., Longhin, E., Mantecca, P., Camatini, M., & Palestini, P. (2013). Milan PM1 induces adverse effects on mice lungs and cardiovascular system. BioMed Research International, 2013, 583513. https://doi.org/10.1155/2013/583513
Hansen, J., Sato, M., Ruedy, R., Lacis, A., & Oinas, V. (2000). Global warming in the twenty-first century: An alternative scenario. Proceedings of the National Academy of Sciences of the United States of America, 97(18), 9875–9880. https://doi.org/10.1073/pnas.170278997
Haywood, J., & Boucher, O. (2000). Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Reviews of Geophysics, 38(4), 513–543. https://doi.org/10.1029/1999RG000078
Heunks, L. M., & Dekhuijzen, P. N. (2000). Respiratory muscle function and free radicals: From cell to COPD. Thorax, 55(8), 704–716. [53]. https://doi.org/10.1136/thorax.55.8.704
Hu, Y., Wu, M., Li, Y., & Liu, X. (2022). Influence of PM 1 exposure on total and cause-specific respiratory diseases: A systematic review and meta-analysis. Environmental Science and Pollution Research International, 29(10), 15117–15126. https://doi.org/10.1007/s11356-021-16536-0
Huang, M., Wang, W., Chan, C. Y., Cheung, K. C., Man, Y. B., Wang, X., & Wong, M. H. (2014). Contamination and risk assessment (based on bioaccessibility via ingestion and inhalation) of metal (loid) s in outdoor and indoor particles from urban centers of Guangzhou, China. The Science of the Total Environment, 479–480, 117–124. https://doi.org/10.1016/j.scitotenv.2014.01.115
Jacobson, M. Z. (2001). Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature, 409(6821), 695–697. https://doi.org/10.1038/35055518
Jalava, P. I., Happo, M. S., Huttunen, K., Sillanpää, M., Hillamo, R., Salonen, R. O., & Hirvonen, M.-R. (2015). Chemical and microbial components of urban air PM cause seasonal variation of toxicological activity. Environmental Toxicology and Pharmacology, 40(2), 375–387. https://doi.org/10.1016/j.etap.2015.06.023
Jalava, P. I., Salonen, R. O., Nuutinen, K., Pennanen, A. S., Happo, M. S., Tissari, J., Frey, A., Hillamo, R., Jokiniemi, J., & Hirvonen, M.-R. (2010). Effect of combustion condition on cytotoxic and inflammatory activity of residential wood combustion particles. Atmospheric Environment, 44(13), 1691–1698. https://doi.org/10.1016/j.atmosenv.2009.12.034
Kato, M., Nakano, M., Morikawa, A., Kimura, H., Shigeta, M., & Kuroume, T. (1991). Ability of polymorphonuclear leukocytes to generate active oxygen species in children with bronchial asthma. Use of chemiluminescence probes with a Cypridina luciferin analog and luminol. International Archives of Allergy and Applied Immunology, 95(1), 17–22. https://doi.org/10.1159/000235448
Lim, S., Lee, M., Lee, G., Kim, S., Yoon, S., & Kang, K. (2012). Ionic and carbonaceous compositions of PM10, PM2.5 and PM1 at Gosan ABC superstation and their ratios as source signature. Atmospheric Chemistry and Physics, 12(4), 2007–2024. https://doi.org/10.5194/acp-12-2007-2012
Liu, C., Hsu, P.-C., Lee, H.-W., Ye, M., Zheng, G., Liu, N., Li, W., & Cui, Y. (2015). Transparent air filter for high-efficiency PM2.5 capture. Nature Communications, 6(1), 6205. https://doi.org/10.1038/ncomms7205
Longhin, E., Pezzolato, E., Mantecca, P., Holme, J. A., Franzetti, A., Camatini, M., & Gualtieri, M. (2013). Season linked responses to fine and quasi-ultrafine Milan PM in cultured cells. Toxicology in Vitro, 27(2), 551–559. https://doi.org/10.1016/j.tiv.2012.10.018
Mangal, A., Satsangi, A., Lakhani, A., & Kumari, K. M. (2021). Characterization of ambient PM 1 at a suburban site of Agra: Chemical composition, sources, health risk and potential cytotoxicity. Environmental Geochemistry and Health, 43(1), 621–642. https://doi.org/10.1007/s10653-020-00737-6
Mazzarella, G., Esposito, V., Bianco, A., Ferraraccio, F., Prati, M. V., Lucariello, A., Manente, L., Mezzogiorno, A., & De Luca, A. (2012). Inflammatory effects on human lung epithelial cells after exposure to diesel exhaust micron sub particles (PM1) and pollen allergens. Environmental Pollution, 161, 64–69. https://doi.org/10.1016/j.envpol.2011.09.046
Murillo, J. H., Rojas Marín, J. F., Mugica Álvarez, V., Solórzano Arias, D., & Guerrero, V. H. B. (2017). Chemical characterization of filterable PM2. 5 emissions generated from regulated stationary sources in the Metropolitan Area of Costa Rica. Atmospheric Pollution Research, 8(4), 709–717. https://doi.org/10.1016/j.apr.2017.01.007
Niu, X., Wang, Y., Ho, S. S. H., Chuang, H. C., Sun, J., Qu, L., . . . & Ho, K. F. (2021b).
Niu, X., Wang, Y., Ho, S. S. H., Chuang, H.-C., Sun, J., Qu, L., Wang, G., & Ho, K. F. (2021a). Characterization of organic aerosols in PM1 and their cytotoxicity in an urban roadside area in Hong Kong. Chemosphere, 263, 128239. https://doi.org/10.1016/j.chemosphere.2020.128239
Onat, B., Alver Şahin, Ü. A., & Bayat, C. (2012). Assessment of particulate matter in the urban atmosphere: Size distribution, metal composition and source characterization using principal component analysis. Journal of Environmental Monitoring, 14(5), 1400–1409. https://doi.org/10.1039/c2em10792a
Ooi, T. C., Ezza, N., Siew, E. L., Sharif, R., Jamhari, A. A., & Rajab, N. F. (2023). Mammalian lung cell cytotoxicity and genotoxicity evaluation of organic and inorganic PM 1 and PM 0.1 of urban air at UKM, Malaysia. Malaysian Journal of Medicine and Health Sciences, 19.
Perrone, M. G., Gualtieri, M., Ferrero, L., Lo Porto, C. L., Udisti, R., Bolzacchini, E., & Camatini, M. (2010). Seasonal variations in chemical composition and in vitro biological effects of fine PM from Milan. Chemosphere, 78(11), 1368–1377. https://doi.org/10.1016/j.chemosphere.2009.12.071
Schraufnagel, D. E. (2020). The health effects of ultrafine particles. Experimental and Molecular Medicine, 52(3), 311–317. https://doi.org/10.1038/s12276-020-0403-3
Tare, V., Tripathi, S. N., Chinnam, N., Srivastava, A. K., Dey, S., Manar, M., Kanawade, V. P., Agarwal, A., Kishore, S., Lal, R. B., & Sharma, M. (2006). Measurements of atmospheric parameters during Indian Space Research Organization Geosphere Biosphere Program Land Campaign II at a typical location in the Ganga Basin: 2. Chemical properties. Journal of Geophysical Research: Atmospheres, 111(D23), D23210. https://doi.org/10.1029/2006JD007279
Tucker, W. G. (2000). An overview of PM2.5 sources and control strategies. Fuel Processing Technology, 65–66, 379–392. https://doi.org/10.1016/S0378-3820(99)00105-8
Umweltbundesamt, Nagl, C., Moosmann, L., & Schneider, J. (2006). Assessment of plans and programs reported under 1996/62/EC—Final report. Service contract to the European Commission, DG Environment Contract No. 070402/2005/421167/MAR/C1. Report REP-0079. Umweltbundesamt GmbH, ISBN 3-85457-876-8. http://ec.europa.eu/environment/air/ambient.htm
van Drooge, B. L., Marqueño, A., Grimalt, J. O., Fernández, P., & Porte, C. (2017). Comparative toxicity and endocrine disruption potential of urban and rural atmospheric organic PM1 in JEG-3 human placental cells. Environmental Pollution, 230, 378–386. https://doi.org/10.1016/j.envpol.2017.06.025
Verma, M. K., Poojan, S., Sultana, S., & Kumar, S. (2014). Mammalian cell-transforming potential of traffic-linked ultrafine particulate matter PM0.056 in urban roadside atmosphere. Mutagenesis, 29(5), 335–340. https://doi.org/10.1093/mutage/geu021
Vixseboxse, E., & de Leeuw, F. A. A. M. (2005). Annual Member States reporting on ambient air quality assessment-The Questionnaire, 2007. http://air-climate.eionet.europa.eu/reports/ETCACC_TP2007_4_AQQ2005
Wessels, A., Birmili, W., Albrecht, C., Hellack, B., Jermann, E., Wick, G., Harrison, R. M., & Schins, R. P. F. (2010). Oxidant generation and toxicity of size-fractionated ambient particles in human lung epithelial cells. Environmental Science and Technology, 44(9), 3539–3545. https://doi.org/10.1021/es9036226
Xu, R., Wei, J., Liu, T., Li, Y., Yang, C., Shi, C., Chen, G., Zhou, Y., Sun, H., & Liu, Y. (2022). Association of short-term exposure to ambient PM1 with total and cause-specific cardiovascular disease mortality. Environment International, 169, 107519. https://doi.org/10.1016/j.envint.2022.107519
Xue, W., Xue, J., Mousavi, A., Sioutas, C., & Kleeman, M. J. (2020). Positive matrix factorization of ultrafine particle mass (PM0.1) at three sites in California. The Science of the Total Environment, 715, 136902. https://doi.org/10.1016/j.scitotenv.2020.136902
Yang, M., Wu, Q.-Z., Zhang, Y.-T., Leskinen, A., Komppula, M., Hakkarainen, H., Roponen, M., Xu, S.-L., Lin, L.-Z., Liu, R.-Q., Hu, L.-W., Yang, B.-Y., Zeng, X.-W., Dong, G.-H., & Jalava, P. (2022). Concentration, chemical composition and toxicological responses of the ultrafine fraction of urban air particles in PM1. Environment International, 170, 107661. https://doi.org/10.1016/j.envint.2022.107661
Zeb, B., Alam, K., Sorooshian, A., Blaschke, T., Ahmad, I., & Shahid, I. (2018). On the morphology and composition of particulate matter in an urban environment. Aerosol and Air Quality Research, 18(6), 1431–1447. https://doi.org/10.4209/aaqr.2017.09.0340
Zhou, Q., Liu, B., Chen, Y., Han, X., Wei, X., Zhu, Y., Zhou, X., & Chen, J. (2017). Characterization of PAHs in size-fractionated submicron atmospheric particles and their association with the intracellular oxidative stress. Chemosphere, 182, 1–7. https://doi.org/10.1016/j.chemosphere.2017.04.133
Zou, Y., Wu, Y., Wang, Y., Li, Y., & Jin, C. (2017). Physicochemical properties, in vitro cytotoxic and genotoxic effects of PM1 and PM2.5 from Shanghai, China. Environmental Science and Pollution Research International, 24(24), 19508–19516. https://doi.org/10.1007/s11356-017-9626-9