Unlocking PM1-Bound Cytotoxicity: Where Do We Stand and What's Next?

Authors

DOI:

https://doi.org/10.70130/CAST.2024.7103

Keywords:

PM1 , Cytotoxicity, Respiratory diseases

Abstract

Particulate matter (PM) in air stands as a crucial environmental health concern, implicated in various diseases based on extensive epidemiological investigations. Associations between PM exposure and conditions such as acute respiratory infections, lung cancer, and chronic respiratory and cardiovascular diseases have been well-established. Despite incomplete 
To better understand how these biological processes work, in vitro studies have shown that PM1 causes harmful effects on cells, damage to DNA, and increased production of proinflammatory cytokines. Biomass burning and vehicular emissions contribute to PM emissions,  which play pivotal roles in altering ambient environment. This encompasses its chemical, 
physical, and toxicological characteristics. This comprehensive chapter consolidates findings on the physiochemical features of PM1 particulates, with an aerodynamic diameter of ≤ 1 µm  (PM1), that focus on impact on health and the environment. PM1 particulates have a cytotoxic activity that poses a threat to health. Furthermore, the review extensively explores the dynamics of cytotoxicity associated with PM1 in various environmental contexts at national and international levels. The amalgamation of insights provides a nuanced perspective on the intricacies of PM1-bound cytotoxicity, thereby enhancing our understanding of air quality 
challenges in both Indian and global contexts. To the best of our knowledge, this is the first review article on the cytotoxicity of PM1 particles.

Author Biographies

  • Amla Chopra, Department of Zoology, Dayalbagh Educational Institute, Agra, India

    Dr. Amla Chopra, a prominent figure in the field of Zoology, has dedicated her research endeavors to the development of non-invasive vaccination strategies. Her laboratory has been at the forefront of exploring deformable biodegradable nanoparticles as a means for non-invasive delivery of drugs and vaccines. Notably, her team has demonstrated the profound impact of higher-order practices like meditation on overall health, establishing a correlation between these practices and immune function, termed the "immune status" as a "neural correlate."

    Chopra's pioneering work has shed light on the intricate relationship between high-order signaling in the brain and its influence on the physiological status of the human body. Her research has also delved into the study of tubulin heterodimer and its role in quantum superposition and entanglement in microtubule-mediated signal processing.

  • Anita Lakhani, Department of Chemistry, Dayalbagh Educational Institute, Agra, India

    Prof. Anita Lakhani is a distinguished faculty member in the Department of Chemistry at Dayalbagh Educational Institute, Agra, India. With over 30 years of teaching experience, she has been actively involved in research pertaining to aerosols, trace gases, polyaromatic hydrocarbons, metal speciation in aerosols, and the reactive oxygen species generation potential of aerosols.

References

Ahrens, C. D., & Henso, R. (2021). Meteorology today: An introduction to weather, climate, and the environment. Cengage Learning.

Akhtar, U. S., Rastogi, N., McWhinney, R. D., Urch, B., Chow, C.-W., Evans, G. J., & Scott, J. A. (2014). The combined effects of physicochemical properties of size-fractionated ambient particulate matter on in vitro toxicity in human A549 lung epithelial cells. Toxicology Reports, 1, 145–156. 18. https://doi.org/10.1016/j.toxrep.2014.05.002

Bai, R., Guan, L., Zhang, W., Xu, J., Rui, W., Zhang, F., & Ding, W. (2016). Comparative study of the effects of PM1-induced oxidative stress on autophagy and surfactant protein B and C expressions in lung alveolar type II epithelial MLE-12 cells. Biochimica et Biophysica Acta, 1860(12), 2782–2792. https://doi.org/10.1016/j.bbagen.2016.05.020

Bamola, S., Goswami, G., Dewan, S., Goyal, I., Agarwal, M., Dhir, A., & Lakhani, A. (2024). Characterising temporal variability of PM2.5/PM10 ratio and its correlation with meteorological variables at a sub-urban site in the Taj City. Urban Climate, 53, 101763. https://doi.org/10.1016/j.uclim.2023.101763

Bonetta, S., Bonetta, S., Schilirò, T., Ceretti, E., Feretti, D., Covolo, L., Vannini, S., Villarini, M., Moretti, M., Verani, M., Carducci, A., Bagordo, F., De Donno, A., Bonizzoni, S., Bonetti, A., Pignata, C., Carraro, E., Gelatti, U., & MAPEC. (2019). Mutagenic and genotoxic effects induced by PM0.5 of different Italian towns in human cells and bacteria: The MAPEC_LIFE study. Environmental Pollution, 245, 1124–1135. https://doi.org/10.1016/j.envpol.2018.11.017

Brown, R. K., Wyatt, H., Price, J. F., & Kelly, F. J. (1996). Pulmonary dysfunction in cystic fibrosis is associated with oxidative stress. The European Respiratory Journal, 9(2), 334–339. [52]. https://doi.org/10.1183/09031936.96.09020334

Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley, J. A., Hansen, J. E., & Hofmann, D. J. (1992). Climate forcing by anthropogenic aerosols. Science, 255(5043), 423–430. https://doi.org/10.1126/science.255.5043.423

Chen, T., Chen, F., Wang, K., Ma, X., Wei, X., Wang, W., Huang, P., Yang, D., Xia, Z., & Zhao, Z. (2021). Acute respiratory response to individual particle exposure (PM1, PM2.5 and PM10) in the elderly with and without chronic respiratory diseases. Environmental Pollution, 271, 116329. https://doi.org/10.1016/j.envpol.2020.116329

da Silva Junior, F. C., Felipe, M. B. M. C., Castro, D. E. F., Araújo, S. C. D. S., Sisenando, H. C. N., & Batistuzzo de Medeiros, S. R. (2021). A look beyond the priority: A systematic review of the genotoxic, mutagenic, and carcinogenic endpoints of non-priority PAHs. Environmental Pollution, 278, 116838. https://doi.org/10.1016/j.envpol.2021.116838

Das, A., Kumar, A., Habib, G., & Vivekanandan, P. (2021). Insights on the biological role of ultrafine particles of size PM<0.25: A prospective study from New Delhi. Environmental Pollution, 268(B), 115638. https://doi.org/10.1016/j.envpol.2020.115638

Davidson, C. I., Phalen, R. F., & Solomon, P. A. (2005). Airborne Particulate matter and human health: A review. Aerosol Science and Technology, 39(8), 737–749. https://doi.org/10.1080/02786820500191348

Dubey, K., Maurya, R., Mourya, D., & Pandey, A. K. (2022). Physicochemical characterization and oxidative potential of size fractionated Particulate Matter: Uptake, genotoxicity and mutagenicity in V-79 cells. Ecotoxicology and Environmental Safety, 247, 114205. https://doi.org/10.1016/j.ecoenv.2022.114205

Farina, F., Sancini, G., Longhin, E., Mantecca, P., Camatini, M., & Palestini, P. (2013). Milan PM1 induces adverse effects on mice lungs and cardiovascular system. BioMed Research International, 2013, 583513. https://doi.org/10.1155/2013/583513

Hansen, J., Sato, M., Ruedy, R., Lacis, A., & Oinas, V. (2000). Global warming in the twenty-first century: An alternative scenario. Proceedings of the National Academy of Sciences of the United States of America, 97(18), 9875–9880. https://doi.org/10.1073/pnas.170278997

Haywood, J., & Boucher, O. (2000). Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Reviews of Geophysics, 38(4), 513–543. https://doi.org/10.1029/1999RG000078

Heunks, L. M., & Dekhuijzen, P. N. (2000). Respiratory muscle function and free radicals: From cell to COPD. Thorax, 55(8), 704–716. [53]. https://doi.org/10.1136/thorax.55.8.704

Hu, Y., Wu, M., Li, Y., & Liu, X. (2022). Influence of PM 1 exposure on total and cause-specific respiratory diseases: A systematic review and meta-analysis. Environmental Science and Pollution Research International, 29(10), 15117–15126. https://doi.org/10.1007/s11356-021-16536-0

Huang, M., Wang, W., Chan, C. Y., Cheung, K. C., Man, Y. B., Wang, X., & Wong, M. H. (2014). Contamination and risk assessment (based on bioaccessibility via ingestion and inhalation) of metal (loid) s in outdoor and indoor particles from urban centers of Guangzhou, China. The Science of the Total Environment, 479–480, 117–124. https://doi.org/10.1016/j.scitotenv.2014.01.115

Jacobson, M. Z. (2001). Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature, 409(6821), 695–697. https://doi.org/10.1038/35055518

Jalava, P. I., Happo, M. S., Huttunen, K., Sillanpää, M., Hillamo, R., Salonen, R. O., & Hirvonen, M.-R. (2015). Chemical and microbial components of urban air PM cause seasonal variation of toxicological activity. Environmental Toxicology and Pharmacology, 40(2), 375–387. https://doi.org/10.1016/j.etap.2015.06.023

Jalava, P. I., Salonen, R. O., Nuutinen, K., Pennanen, A. S., Happo, M. S., Tissari, J., Frey, A., Hillamo, R., Jokiniemi, J., & Hirvonen, M.-R. (2010). Effect of combustion condition on cytotoxic and inflammatory activity of residential wood combustion particles. Atmospheric Environment, 44(13), 1691–1698. https://doi.org/10.1016/j.atmosenv.2009.12.034

Kato, M., Nakano, M., Morikawa, A., Kimura, H., Shigeta, M., & Kuroume, T. (1991). Ability of polymorphonuclear leukocytes to generate active oxygen species in children with bronchial asthma. Use of chemiluminescence probes with a Cypridina luciferin analog and luminol. International Archives of Allergy and Applied Immunology, 95(1), 17–22. https://doi.org/10.1159/000235448

Lim, S., Lee, M., Lee, G., Kim, S., Yoon, S., & Kang, K. (2012). Ionic and carbonaceous compositions of PM10, PM2.5 and PM1 at Gosan ABC superstation and their ratios as source signature. Atmospheric Chemistry and Physics, 12(4), 2007–2024. https://doi.org/10.5194/acp-12-2007-2012

Liu, C., Hsu, P.-C., Lee, H.-W., Ye, M., Zheng, G., Liu, N., Li, W., & Cui, Y. (2015). Transparent air filter for high-efficiency PM2.5 capture. Nature Communications, 6(1), 6205. https://doi.org/10.1038/ncomms7205

Longhin, E., Pezzolato, E., Mantecca, P., Holme, J. A., Franzetti, A., Camatini, M., & Gualtieri, M. (2013). Season linked responses to fine and quasi-ultrafine Milan PM in cultured cells. Toxicology in Vitro, 27(2), 551–559. https://doi.org/10.1016/j.tiv.2012.10.018

Mangal, A., Satsangi, A., Lakhani, A., & Kumari, K. M. (2021). Characterization of ambient PM 1 at a suburban site of Agra: Chemical composition, sources, health risk and potential cytotoxicity. Environmental Geochemistry and Health, 43(1), 621–642. https://doi.org/10.1007/s10653-020-00737-6

Mazzarella, G., Esposito, V., Bianco, A., Ferraraccio, F., Prati, M. V., Lucariello, A., Manente, L., Mezzogiorno, A., & De Luca, A. (2012). Inflammatory effects on human lung epithelial cells after exposure to diesel exhaust micron sub particles (PM1) and pollen allergens. Environmental Pollution, 161, 64–69. https://doi.org/10.1016/j.envpol.2011.09.046

Murillo, J. H., Rojas Marín, J. F., Mugica Álvarez, V., Solórzano Arias, D., & Guerrero, V. H. B. (2017). Chemical characterization of filterable PM2. 5 emissions generated from regulated stationary sources in the Metropolitan Area of Costa Rica. Atmospheric Pollution Research, 8(4), 709–717. https://doi.org/10.1016/j.apr.2017.01.007

Niu, X., Wang, Y., Ho, S. S. H., Chuang, H. C., Sun, J., Qu, L., . . . & Ho, K. F. (2021b).

Niu, X., Wang, Y., Ho, S. S. H., Chuang, H.-C., Sun, J., Qu, L., Wang, G., & Ho, K. F. (2021a). Characterization of organic aerosols in PM1 and their cytotoxicity in an urban roadside area in Hong Kong. Chemosphere, 263, 128239. https://doi.org/10.1016/j.chemosphere.2020.128239

Onat, B., Alver Şahin, Ü. A., & Bayat, C. (2012). Assessment of particulate matter in the urban atmosphere: Size distribution, metal composition and source characterization using principal component analysis. Journal of Environmental Monitoring, 14(5), 1400–1409. https://doi.org/10.1039/c2em10792a

Ooi, T. C., Ezza, N., Siew, E. L., Sharif, R., Jamhari, A. A., & Rajab, N. F. (2023). Mammalian lung cell cytotoxicity and genotoxicity evaluation of organic and inorganic PM 1 and PM 0.1 of urban air at UKM, Malaysia. Malaysian Journal of Medicine and Health Sciences, 19.

Perrone, M. G., Gualtieri, M., Ferrero, L., Lo Porto, C. L., Udisti, R., Bolzacchini, E., & Camatini, M. (2010). Seasonal variations in chemical composition and in vitro biological effects of fine PM from Milan. Chemosphere, 78(11), 1368–1377. https://doi.org/10.1016/j.chemosphere.2009.12.071

Schraufnagel, D. E. (2020). The health effects of ultrafine particles. Experimental and Molecular Medicine, 52(3), 311–317. https://doi.org/10.1038/s12276-020-0403-3

Tare, V., Tripathi, S. N., Chinnam, N., Srivastava, A. K., Dey, S., Manar, M., Kanawade, V. P., Agarwal, A., Kishore, S., Lal, R. B., & Sharma, M. (2006). Measurements of atmospheric parameters during Indian Space Research Organization Geosphere Biosphere Program Land Campaign II at a typical location in the Ganga Basin: 2. Chemical properties. Journal of Geophysical Research: Atmospheres, 111(D23), D23210. https://doi.org/10.1029/2006JD007279

Tucker, W. G. (2000). An overview of PM2.5 sources and control strategies. Fuel Processing Technology, 65–66, 379–392. https://doi.org/10.1016/S0378-3820(99)00105-8

Umweltbundesamt, Nagl, C., Moosmann, L., & Schneider, J. (2006). Assessment of plans and programs reported under 1996/62/EC—Final report. Service contract to the European Commission, DG Environment Contract No. 070402/2005/421167/MAR/C1. Report REP-0079. Umweltbundesamt GmbH, ISBN 3-85457-876-8. http://ec.europa.eu/environment/air/ambient.htm

van Drooge, B. L., Marqueño, A., Grimalt, J. O., Fernández, P., & Porte, C. (2017). Comparative toxicity and endocrine disruption potential of urban and rural atmospheric organic PM1 in JEG-3 human placental cells. Environmental Pollution, 230, 378–386. https://doi.org/10.1016/j.envpol.2017.06.025

Verma, M. K., Poojan, S., Sultana, S., & Kumar, S. (2014). Mammalian cell-transforming potential of traffic-linked ultrafine particulate matter PM0.056 in urban roadside atmosphere. Mutagenesis, 29(5), 335–340. https://doi.org/10.1093/mutage/geu021

Vixseboxse, E., & de Leeuw, F. A. A. M. (2005). Annual Member States reporting on ambient air quality assessment-The Questionnaire, 2007. http://air-climate.eionet.europa.eu/reports/ETCACC_TP2007_4_AQQ2005

Wessels, A., Birmili, W., Albrecht, C., Hellack, B., Jermann, E., Wick, G., Harrison, R. M., & Schins, R. P. F. (2010). Oxidant generation and toxicity of size-fractionated ambient particles in human lung epithelial cells. Environmental Science and Technology, 44(9), 3539–3545. https://doi.org/10.1021/es9036226

Xu, R., Wei, J., Liu, T., Li, Y., Yang, C., Shi, C., Chen, G., Zhou, Y., Sun, H., & Liu, Y. (2022). Association of short-term exposure to ambient PM1 with total and cause-specific cardiovascular disease mortality. Environment International, 169, 107519. https://doi.org/10.1016/j.envint.2022.107519

Xue, W., Xue, J., Mousavi, A., Sioutas, C., & Kleeman, M. J. (2020). Positive matrix factorization of ultrafine particle mass (PM0.1) at three sites in California. The Science of the Total Environment, 715, 136902. https://doi.org/10.1016/j.scitotenv.2020.136902

Yang, M., Wu, Q.-Z., Zhang, Y.-T., Leskinen, A., Komppula, M., Hakkarainen, H., Roponen, M., Xu, S.-L., Lin, L.-Z., Liu, R.-Q., Hu, L.-W., Yang, B.-Y., Zeng, X.-W., Dong, G.-H., & Jalava, P. (2022). Concentration, chemical composition and toxicological responses of the ultrafine fraction of urban air particles in PM1. Environment International, 170, 107661. https://doi.org/10.1016/j.envint.2022.107661

Zeb, B., Alam, K., Sorooshian, A., Blaschke, T., Ahmad, I., & Shahid, I. (2018). On the morphology and composition of particulate matter in an urban environment. Aerosol and Air Quality Research, 18(6), 1431–1447. https://doi.org/10.4209/aaqr.2017.09.0340

Zhou, Q., Liu, B., Chen, Y., Han, X., Wei, X., Zhu, Y., Zhou, X., & Chen, J. (2017). Characterization of PAHs in size-fractionated submicron atmospheric particles and their association with the intracellular oxidative stress. Chemosphere, 182, 1–7. https://doi.org/10.1016/j.chemosphere.2017.04.133

Zou, Y., Wu, Y., Wang, Y., Li, Y., & Jin, C. (2017). Physicochemical properties, in vitro cytotoxic and genotoxic effects of PM1 and PM2.5 from Shanghai, China. Environmental Science and Pollution Research International, 24(24), 19508–19516. https://doi.org/10.1007/s11356-017-9626-9

Published

2024-06-04

How to Cite

Goswami, G., Bamola, S., Chopra, A. ., & Lakhani, A. . (2024). Unlocking PM1-Bound Cytotoxicity: Where Do We Stand and What’s Next?. Contemporary Advances in Science and Technology, 7, 29-44. https://doi.org/10.70130/CAST.2024.7103