Advanced analytical techniques for the identification of plant derived bioactive compounds
DOI:
https://doi.org/10.70130/RCS.2025.0201004Keywords:
HPLC, NMR, Gas Chromatography, , Bioactive compounds , non-conventional extraction techniquesAbstract
Abstract
This review takes a look at the latest ways to get and analyze plant-based compounds, with a focus on being eco-friendly and practical. Supercritical fluid extraction (SFE) uses CO₂, which helps increase yields while using less solvent and keeping the plant’s molecules intact. Ultrasound-assisted extraction (UAE) uses sound waves to break down cell walls, making it easier to recover sensitive compounds quickly and with less solvent. Microwave-Assisted Extraction (MAE) heats the solvent directly, speeding up the process compared to traditional methods. For analyzing plant chemicals, high-resolution mass spectrometry gives detailed information about these substances and shows where they are found in plant tissues. Nuclear magnetic resonance (NMR) spectroscopy can identify compound structures easily, without needing complicated setups. Traditional methods like UV–vis and Fourier-transform infrared spectroscopy (FT-IR) are still valuable for quick measurements, especially when combined with data analysis. There are some challenges, too, like making sure extraction yields are consistent, keeping bioactive properties during isolation, and scaling up laboratory results for bigger production without changing the chemical makeup. New options like green solvents, including deep eutectic solvents and ionic liquids, are less toxic and biodegradable. In the future, using machine learning to model extraction processes might help move from small experiments to larger production more smoothly.
UNSDG GOALS: UNSDG 3: Good Health and Well-being, UNSDG 9: Industry, Innovation and Infrastructure, UNSDG 12: Responsible Consumption and Production, UNSDG 15: Life on Land
References
Afzal, I., Habiba, U., & Yasmeen, H. (2023). Therapeutic potential of medicinal plants: A review on phytochemical constituents and their pharmacological activities. Journal of Bioresource Management, 10(4), 62–75.
Almajidi, M., Hamza, T. A., Alhameedi, D. Y. et al. (2024). An overview of the potential of mass spectrometry in the study of peptide drug conjugates. Chemical Reviews, 6(4), 433–457. https://doi.org/10.48309/jcr.2024.467337.1346
Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D. G., & Lightfoot, D. A. (2017). Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants, 6(4), 42. https://doi.org/10.3390/plants6040042
Anulika, N. P., Ignatius, E. O., Raymond, E. S., Osasere, O. I., & Abiola, A. H. (2016). The chemistry of natural product: Plant secondary metabolites. International Journal of Technology Enhancements and Emerging Engineering Research, 4(8), 1–8.
Atanasov, A. G., Zotchev, S. B., Dirsch, V. M., International Natural Product Sciences Taskforce, & Supuran, C. T. (2021). Natural products in drug discovery: Advances and opportunities. Nature Reviews. Drug Discovery, 20(3), 200–216. https://doi.org/10.1038/s41573-020-00114-z
Azmir, J., Zaidul, I. S. M., Rahman, M. M., Sharif, K. M., Mohamed, A., Sahena, F., & Omar, A. K. M. (2013). Techniques for extraction of bioactive compounds from plant materials: A review. Food Chemistry, 141(1), 23–28. https://doi.org/10.1016/j.jfoodeng.2013.01.014
Barri, T., Holness, H., & Waring, J. (2024). An integrated NMR, LC-MS, and GC-MS approach to evaluate thermal and nonthermal processing of cashew apple juice. Journal of Food Composition and Analysis, 101, Article 105415. https://doi.org/10.1016/j.jfca.2024.105415
Beltran, M., & Garcia. (2021). Application of pulsed electric fields for the extraction of bioactive compounds from plant materials. Journal of Food Engineering, 298, Article 110460. https://doi.org/10.3390/biomass3040022
Bianchi, F., Riboni, N., Termopoli, V., Mendez, L., Medina, I., Ilag, L., Cappiello, A., & Careri, M. (2018). MS-Based Analytical Techniques: Advances in Spray-Based Methods and EI-LC-MS Applications. Journal of Analytical Methods in Chemistry, 2018, Article 1308167. https://doi.org/10.1155/2018/1308167
Borges, R. M., & Teixeira, A. M. (2024). On the part that NMR should play in mass spectrometry metabolomics in natural products studies. Frontiers in Natural Products, 3. https://doi.org/10.3389/fntpr.2024.1359151
Caldas, T. W., Mazza, K. E., Teles, A. S., Mattos, G. N., Brígida, A. I. S., Conte-Junior, C. A., & Tonon, R. V. (2020). Percolation extraction of phenolic compounds from grape skin: A case study. Industrial Crops and Products, 111, 86–91. https://doi.org/10.1016/j.indcrop.2017.10.012
Canadas, R., Gonzalez-Miquel, M., Gonzalez, E. J., Diaz, I., & Rodriguez, M. (2020). Overview of neoteric solvents as extractants in the food industry: A focus on phenolic compounds separation from liquid streams. International Food Research Journal, 136, Article 109558. https://doi.org/10.1016/j.foodres.2020.109558
Capaldi, G., Binello, A., Aimone, C., Mantegna, S., Grillo, G., & Cravotto, G. (2024). New trends in extraction-process intensification: Hybrid and sequential green technologies. Industrial Crops and Products, 209, Article 117906. https://doi.org/10.1016/j.indcrop.2023.117906
Chaachouay, N., & Zidane, L. (2024). Plant-derived natural products: A source for drug discovery and development. Drugs and Drug Candidates, 3(1), 184–207. https://doi.org/10.3390/ddc3010011
Chemat, F., Rombaut, N., Sicaire, A.-G., Meullemiestre, A., Fabiano-Tixier, A.-S., & Abert-Vian, M. (2017). Ultrasound-assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols, and applications [A review]. Ultrasonics Sonochemistry, 34, 540–560. https://doi.org/10.1016/j.ultsonch.2016.06.035
Chemat, F., Vian, M. A., & Cravotto, G. (2012). Green extraction of natural products: Concept and principles. International Journal of Molecular Sciences, 13(7), 8615–8627. https://doi.org/10.3390/ijms13078615
Chikezie, P. C., Ibegbulem, C. O., & Mbagwu, F. N. (2015). Bioactive principles from medicinal plants. Research Journal of Phytochemistry, 9(3), 88–115. https://doi.org/10.3923/rjphyto.2015.88.115
Clarke, C. J., Tu, W.-C., Levers, O., Bröhl, A., & Hallett, J. P. (2018). Green and sustainable solvents in chemical processes. Chemical Reviews, 118(2), 747–800. https://doi.org/10.1021/acs.chemrev.7b00571
da Rosa, A. C. S., Hoscheid, J., Garcia, V. A. DS, de Oliveira Santos Junior, O., & da Silva, C. (2024). Phytochemical extract from Syzygium cumini leaf: Maximization of compound extraction, chemical characterization, antidiabetic and antibacterial activity, and cell viability. Processes, 12(10), Article 2270. https://doi.org/10.3390/pr12102270
Dai, J., & Mumper, R. J. (2010). Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules, 15(10), 7313–7352. https://doi.org/10.3390/molecules15107313
Dar, A. A., Raina, A., & Kumar, A. (2022). Development, method validation and simultaneous quantification of eleven bioactive natural products from high-altitude medicinal plant by high-performance liquid chromatography. Biomedical Chromatography, 36(8), Article e5408. https://doi.org/10.1002/bmc.5408
Das k, Tiwari RKS & Shrivastava DK. (2010). Techniques for evaluation of medicinal plant products as antimicrobial agent: Current methods and future trends. Journal of Medicinal Plants Research, 4(2), 104–111.
De Monte, C., Carradori, S., Granese, A., Di Pierro, G. B., Leonardo, C., & De Nunzio, C. (2014). Modern extraction techniques and their impact on the pharmacological profile of Serenoa repens extracts for the treatment of lower urinary tract symptoms. BMC Urology, 14, Article 1. https://doi.org/10.1186/1471-2490-14-63
Dmitrieva, E. V., Temerdashev, A. Z., Zorina, M. O., Feng, Y.-Q., & Nesterenko, P. N. (2022). Solid-phase analytical derivatization as a tool for the quantification of steroid hormones in human urine with HPLC-Q-ToF detection. Journal of Pharmaceutical and Biomedical Analysis, 214, Article 114736. https://doi.org/10.1016/j.jpba.2022.114736
Ekor, M. (2014). The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Frontiers in Pharmacology, 4, 177. https://doi.org/10.3389/fphar.2013.00177
Gateau, H., Blanckaert, V., Veidl, B., Burlet-Schiltz, O., Pichereaux, C., Gargaros, A., Marchand, J., & Schoefs, B. (2021). Application of pulsed electric fields for the biocompatible extraction of proteins from the microalga Haematococcus pluvialis. Bioelectrochemistry, 137, Article 107588. https://doi.org/10.1016/j.bioelechem.2020.107588
Gauto, D. F., Kordes, S., Lilie, H., & Hoffmann, S. V. (2023). Chemical shift-dependent interaction maps in molecular solids. Journal of the American Chemical Society, 145(38), 21712–21722. https://doi.org/10.1021/jacs.3c04538a
Grdisa, M., Varga, F., Nincevic, T., Pticek, B., Dabic, D., & Biosic, M. (2020). The extraction efficiency of maceration, UAE and MSPD in the extraction of pyrethrins from dalmatian pyrethrum. Agric. Conspec. Sci., 85, 257–267.
Hasanov, J., Salikhov, S., & Oshchepkova, Y. (2023). Techno-economic evaluation of supercritical fluid extraction of flaxseed oil. The Journal of Supercritical Fluids, 194, Article 105839. https://doi.org/10.1016/j.supflu.2023.105839
Hazra, K. M., Roy, R. N., Sen, S. K., & Laska, S. (2007). Isolation of antibacterial pentahydroxy flavones from the seeds of Mimusops elengi Linn. African Journal of Biotechnology, 6(12), 1446–1449.
Herrero, M., Mendiola, J. A., Cifuentes, A., & Ibáñez, E. (2010). Supercritical fluid extraction: Recent advances and applications. Journal of Chromatography. A, 1217(16), 2495–2511. https://doi.org/10.1016/j.chroma.2009.12.019
Hidayat, R., & Wulandari, P. (2021). Methods of extraction: Maceration, percolation and decoction. Eureka Herba Indonesia, 2(1), 73–79. https://doi.org/10.37275/ehi.v2i1.15
Huang, Z., Bi, T., Jiang, H., & Liu, H. (2024). Review on NMR as a tool to analyse natural products extract directly: Molecular structure elucidation and biological activity analysis. Phytochemical Analysis, 35(1), 5–16. https://doi.org/10.1002/pca.3292
Kabera, J. N., Semana, E., Mussa, A. R., & He, X. (2014). Plant secondary metabolites: Biosynthesis, classification, function and pharmacological properties. Journal of Pharmacy and Pharmacology, 2, 377–392.
Kapoor, S., Gandhi, N., Tyagi, S. K., Kaur, A., & Mahajan, B. V. C. (2020). Extraction and characterization of guava seed oil: A novel industrial byproduct. LWT, 132, Article 109882. https://doi.org/10.1016/j.lwt.2020.109882
Kentish, S., & Ashokkumar, M. (2011). The Physical and Chemical Effects of Ultrasound. In H. Feng, G. Barbosa-Canovas, J. Weiss (Eds.). Ultrasound Technologies for Food and Bioprocessing (pp. 1–12). Springer New York. https://doi.org/10.1007/978-1-4419-7472-3_1
Khajehei, F., Niakousari, M., Seidi Damyeh, M., Merkt, N., Claupein, W., & Graeff-Hoenninger, S. (2017). Impact of ohmic-assisted decoction on bioactive components extracted from yacon (Smallanthus sonchifolius poepp.) leaves: Comparison with conventional decoction. Molecules, 22(12), 2043. https://doi.org/10.3390/molecules22122043
Khan, A. A., Kumar, V., Singh, B. K., & Singh, R. (2014). Evaluation of wound healing property of Terminalia catappa on excision wound models in Wistar rats. Drug Research, 64(5), 225–228. https://doi.org/10.1055/s-0033-1357203
Khan, S, & Abu-Reidah, I. M. (2023). Extraction and isolation of hydrophobic compounds and tannins from plant matrices: A review. Journal of Separation Science, 46(3), 453–473. https://doi.org/10.1002/jssc.202201731
Khaw, K.-Y., Parat, M.-O., Shaw, P. N., & Falconer, J. R. (2017). Solvent supercritical fluid technologies to extract bioactive compounds from natural sources: A review. Molecules, 22(7), 1186. https://doi.org/10.3390/molecules22071186
Kowalczuk, D., & Pitucha, M. (2019). Application of FTIR method for the assessment of immobilization of active substances in the matrix of biomedical materials. Materials, 12(18), 2972. https://doi.org/10.3390/ma12182972
Lakka, A., Bozinou, E., Makris, D. P., & Lalas, S. I. (2021). Evaluation of pulsed electric field polyphenol extraction from Vitis vinifera, Sideritis scardica and Crocus sativus. ChemEngineering, 5(2), 25. https://doi.org/10.3390/chemengineering5020025
Lee, J.-E., Jayakody, J. T. M., Kim, J.-I., Jeong, J.-W., Choi, K.-M., Kim, T.-S., Seo, C., Azimi, I., Hyun, J.-M., & Ryu, B.-M. (2024). The influence of solvent choice on the extraction of bioactive compounds from Asteraceae: A comparative review. Foods, 13(19), 3151. https://doi.org/10.3390/foods13193151
López‐Cruz, R., Sandoval‐Contreras, T., & Iñiguez‐Moreno, M. (2023). Plant pigments: Classification, extraction, and challenge of their application in the food industry. Food and Bioprocess Technology, 16(12), 2725–2741. https://doi.org/10.1007/s11947-023-03075-4
López-Salazar, H., Camacho-Díaz, B. H., Ocampo, M. L. A., & Jiménez-Aparicio, A. R. (2023). Microwave-assisted extraction of functional compounds from plants: A Review. BioResources, 18(3). https://doi.org/10.15376/biores.18.3.Lopez-Salazar
López-Salazar, H., Camacho-Díaz, B. H., Ocampo, M. L. A., & Jiménez-Aparicio, A. R. (2023). Microwave-assisted extraction of functional compounds from plants: A review. BioResources, 18(3), 6614–6638. https://doi.org/10.15376/biores.18.3.Lopez-Salazar
Margolin Eren, K. J., Prest, H. F., & Amirav, A. (2022). Nitrogen and hydrogen as carrier and make-up gases for GC-MS with Cold EI. Journal of Mass Spectrometry, 57(5), Article e4830. https://doi.org/10.1002/jms.4830
Marić, M., Grassino, A. N., Zhu, Z., Barba, F. J., Brnčić, M., & Rimac Brnčić, S. (2018). An overview of the traditional and innovative approaches for pectin extraction from plant food wastes and by-products: Ultrasound-, microwaves-, and enzyme-assisted extraction. Trends in Food Science and Technology, 76, 28–37. https://doi.org/10.1016/j.tifs.2018.03.022
Maritha, V., Harlina, P. W., Musfiroh, I., Gazzali, A. M., & Muchtaridi, M. (2022). The application of chemometrics in metabolomic and lipidomic analysis data presentation for halal authentication of meat products. Molecules, 27(21), 7571. https://doi.org/10.3390/molecules27217571
Marney, L. C., Choi, J., Alcazar Magana, A., Yang, L., Techen, N., Alam, M. N., Brandes, M., Soumyanath, A., Stevens, J. F., & Maier, C. S. (2024). Liquid chromatography‐mass spectrometry quantification of phytochemicals in Withania somnifera using data‐dependent acquisition, multiple‐reaction‐monitoring, and parallel‐reaction‐monitoring with an inclusion list. Frontiers in Chemistry, 12, Article 1373535. https://doi.org/10.3389/fchem.2024.1373535
Martínez, J. M., Schottroff, F., Haas, K., Fauster, T., Sajfrtová, M., Álvarez, I., Raso, J., & Jaeger, H. (2020). Evaluation of pulsed electric fields technology for the improvement of subsequent carotenoid extraction from dried Rhodotorula glutinis yeast. Food Chemistry, 323, Article 126824. https://doi.org/10.1016/j.foodchem.2020.126824
Muhammad, D. R. A., Ayouaz, S., Rachmawati, A. N., Madani, K., Fibri, D. L. N., Rafi, M., Julianti, E., & Fahmy, K. (2024). Advanced and potential methods for extraction of bioactive compounds from avocado peel. A review. Applied Sciences, 14(14), Article 60188. https://doi.org/10.3390/app14146018
Ncube, N. S., Afolayan, A. J., & Okoh, A. I. (2008). Assessment techniques of antimicrobial properties of natural compounds of plant origin: Current methods and future trends. African Journal of Biotechnology, 7(12), 1797–1806. https://doi.org/10.5897/AJB07.613
Newman, D. J., & Cragg, G. M. (2020). Natural products as sources of new drugs over the nearly four decades from 1981 to 2019. Journal of Natural Products, 83(3), 770–803. https://doi.org/10.1021/acs.jnatprod.9b01285
Nobossé, P. A., Fombang, E. N., & Mbofung, C. M. F. (2018). Effects of age and extraction solvent on phytochemical content and antioxidant activity of fresh Moringa oleifera L. leaves. Food Science and Nutrition, 6(8), 2188–2198. https://doi.org/10.1002/fsn3.783
Pai, S., Hebbar, A., & Selvaraj, S. (2022). A critical look at challenges and future scopes of bioactive compounds and their incorporations in the food, energy, and pharmaceutical sector. Environmental Science and Pollution Research International, 29(24), 35518–35541. https://doi.org/10.1007/s11356-022-19423-4
Pandey, A., & Tripathi, S. (2014). Concept of standardization, extraction, and pre-phytochemical screening strategies for herbal drugs. Journal of Pharmacognosy and Phytochemistry, 2(5), 115–119.
Poojary, M. M., Lund, M. N., & Barba, F. J. (2020). Pulsed electric field (PEF) as an efficient technology for food additives and nutraceuticals development. In F. J. Barba, O. Parniakov, & A. Wiktor (Eds.), Pulsed electric fields to obtain healthier and sustainable food for tomorrow (pp. 65–99). Academic Press. https://doi.org/10.1016/B978-0-12-816402-0.00004-5
Rizvi, N. B., Fatima, A., Busquets, R., Khan, M. R., Ashraf, S., Khan, M. S., & Oz, F. (2023). Effect of the media in the Folin-Ciocalteu Assay for the analysis of the total phenolic content of olive products. Food Analytical Methods, 16(11–12), 1627–1634. https://doi.org/10.1007/s12161-023-02527-z
Sánchez-Rangel, J. C., Benavides, J., & Hernández, J. A. (2022). Rapid screening of phenolic compounds in extracts of photosynthetic organisms separated using a C18 monolithic column based HPLC-UV method. Journal of Chromatography. Part B, 1192, Article 123123. https://doi.org/10.1016/j.jchromb.2022.123123
Sasidharan, S., Chen, Y., Saravanan, D., Sundram, K. M., & Yoga Latha, L. Y. (2011). Extraction, isolation, and characterization of bioactive compounds from plants’ extracts. African Journal of Traditional, Complementary, and Alternative Medicines, 8(1), 1–10. https://doi.org/10.4314/ajtcam.v8i1.60483
Seger, C., & Sturm, S. (2022). NMR-based chromatography readouts: Indispensable tools to “translate” analytical features into molecular structures. Cells, 11(21), 3526. https://doi.org/10.3390/cells11213526
Shakya, A. K. (2016). Medicinal plants: Future source of new drugs. International Journal of Herbal Medicine, 4(4), 59–64.
Sharma, J. B., Sherry, S., Bhatt, S., Saini, V., & Kumar, M. (2021). Development and Validation of UV-Visible Spectrophotometric method for the Estimation of Curcumin and Tetrahydrocurcumin in Simulated Intestinal Fluid. Research Journal of Pharmacy and Technology, 2971–2975. https://doi.org/10.52711/0974-360X.2021.00520
Shikov, A. N., Mikhailovskaya, I. Y., Narkevich, I. A., Flisyuk, E. V., & Pozharitskaya, O. N. (2022). Methods of extraction of medicinal plants. In Evidence-based validation of herbal medicine (pp. 771–796). Elsevier. https://doi.org/10.1016/B978-0-323-85542-6.00029-9
Shorstkii, I., Mirshekarloo, M. S., & Koshevoi, E. (2017). Application of pulsed electric field for oil extraction from sunflower seeds: Electrical parameter effects on oil yield. Journal of Food Process Engineering, 40(1), Article e1228. https://doi.org/10.1111/jfpe.12281
Srivastava, P., Bej, S., Yordanova, K., & Wolkenhauer, O. (2021). Self-attention-based models for the extraction of molecular interactions from biological texts. Biomolecules, 11(11), 1591. https://doi.org/10.3390/biom11111591
Thomas, G. (2024a). The application of atomic spectroscopy techniques in the recovery of critical raw materials from industrial waste streams, part I. Spectroscopy, 39(4), 8–11. https://doi.org/10.56530/spectroscopy.nt4688b5
Thomas, G. (2024b). The Application of Atomic Spectroscopy Techniques in the Recovery of Critical Raw Materials from Industrial Waste Streams, part II. Spectroscopy, 39(6), 8–11. https://doi.org/10.56530/spectroscopy.qr1578s7
Usman, M., Nakagawa, M., & Cheng, S. (2023). Emerging trends in green extraction techniques for bioactive natural products. Processes, 11(12), 3444. https://doi.org/10.3390/pr11123444
Wink, M. (2015). Modes of Action of Herbal Medicines and Plant Secondary Metabolites. Medicines, 2(3), 251–286. https://doi.org/10.3390/medicines2030251
Workman, J., Jr. (2024). A review of the latest research applications using FT IR spectroscopy. Spectroscopy, 39(Suppl. 8), 22–28. https://doi.org/10.56530/spectroscopy.ak9689m8
Yang, L., Gu, Y., Gong, H., Liu, Z.-L., Xiong, X., & Fang, X. (2025). Development and research of the quadrupole mass spectrometry simulation model with the entire ion optics system. Scientific Reports, 15(1), Article 7510. https://doi.org/10.1038/s41598-025-91747-w
Zhang, Q.-W., Lin, L.-G., & Ye, W.-C. (2018). Techniques for extraction and isolation of natural products: A comprehensive review. Chinese Medicine, 13, 20. https://doi.org/10.1186/s13020-018-0177-x
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2025 RSYN Chemical Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.